

Inhibitory Effect of Captan in the Small Intestine Absorption Capacity of the Mouse

S. J. Iturri, J. Soto

Department of Ecological Sciences, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile

Received: 19 July 1993/Accepted: 25 March 1994

Captan, N-(trichloromethyl)-thio cyclohex-4-n-1,2-dicarboximide has been used as a protective, non-systemic fungicide for the treatment of foliar and seed-borne diseases showing low toxicity to animals in laboratory tests (Gaines and Linder, 1986). On the other hand, there are evidences indicating this fungicide has a mutagenic and teratogenic action on different animal species (Bridges, 1975; Carere et al., 1978; Martin and Lewis, 1979).

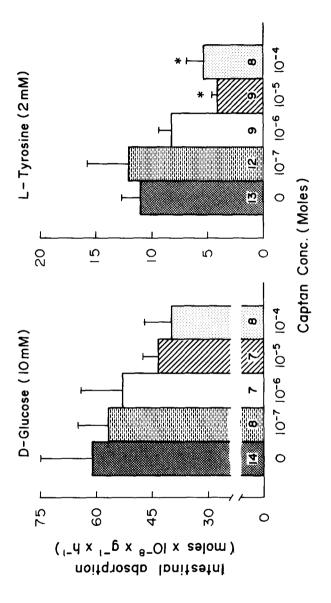
Little is known about the action of captan on physiological parameters of animals who have been exposed to it. Among them the small intestine, important from the view point of absorption of nutrients needed for growth and maintenance has proved to be very sensitive when exposed to environmental pollutants. The transport mechanism in epithelial cells may be affected by relative low doses of such chemicals (Iturri and Wolff, 1982; Madge, 1976; Iturri and Peña, 1986; Miller, 1981; Wapnir et al., 1977).

Therefore this investigation was designed to evaluate the effect of captan on the intestinal absorption capacity of the mouse by measuring the transport of D-glucose and L-tyrosine through the intestinal epithelium in in vitto and in vivo preparations.

MATERIALS AND METHODS

Experiments were carried out in adult female mice (CF $_1$ strain) obtained from Instituto de Salud Pública, Chile. They were fed a commercial diet *ad Libitum* with free access to water. All animals ranging in weight from 25-30 g were fasted 24 h prior to the experiment.

In in vitro experiments animals were killed by atlas dislocation. The mid portion of the small intestine (3-4 cm long) from each animal was excised, washed with ice-cold 0.15 M NaCl and everted forming an intestinal sac according to Wilson and Wiseman (1954). Details of the preparation have been described in a previous work (Iturri and Wolff, 1982). Alternate intestinal pieces according to their position relative to the stomach were used as control or


experimental material in order to minimize the transport variability of the segments in succesive experiments. Captan dissolved in ethanol 95% was diluted in a Krebs-Henseleit solution to reach a final concentration of 10^{-4} - 10^{-7} M inside the sac.The active transport of D-glucose (10 mM) and L-tyrosine (2 mM) was evaluated by measuring the increase in concentration of both compounds inside the sac after 60 min of incubation. D-glucose was determined using the method of Somogyi-Nelson (Nelson, 1944) and L-tyrosine by the method of Lowry et al. (1951). The sacs were weighed and the area determined at the end of the experimental period.

In in vivo experiments animals were fasted 24 hr prior to the experiment and anesthetized with i.p. injection of urethane (0.12) g/100 g body weight). A laparotomy (3-4 cm) was performed locate and isolate the mid portion of the jejunum between polyethylene cannulae. An inlet cannula was inserted and tied to the intestine and connected to a perfusion pump (Harvard Apparatus, Mod 600-900). The outlet cannula placed 4-5 cm apart from inlet cannula was used to collect the perfusate. Before starting the perfusion, the intestinal lumen was flushed with 0.15 M NaCl. Intestinal perfusate was a Krebs-Henseleit solution maintained at 30°C containing D-glucose (10 mM) and L-tyrosine (2 mM) with dissolved in the solution to give a final without captan concentration equal to $10^{-4} - 10^{-7}$ M. The transport of D-glucose and L-tyrosine was evaluated measuring the change in concentration of both compounds in the perfusate for a 30 min period during 2 hours, being the perfusion rate of 0.1 ml/min. D-glucose determined by the Somogyi-Nelson (1952) method and L-tyrosine by the method of Lowry et al. (1951).

Results are expressed as means \pm SEM. Statistical analysis was done in an IBM computer, model PC XT using an ANOVA test and Duncan's test for multiple comparison between means (Sokal and Rohlf, 1969) being the significance accepted with values of probability less than 0.05.

RESULTS AND DISCUSSION

Figure 1 show the effect of captan $(10^{-7} - 10^{-4} \text{ M})$ on the active transport of D-Glucose (10 mM) and L-tyrosine (2 mM) in everted sacs of mouse small intestine. Results are expressed as moles x $10^{-8} \times g^{-1} \cdot h^{-1}$. In all cases the inhibition of the transport of both compounds increased as the concentration of the fungicide increased. This inhibition was statistically significant (P < 0.01) in the case of tyrosine with the two highest concentrations of captan used $(10^{-5} - 10^{-4} \text{ M})$ compared with values from control group. The glucose absorption capacity even though showed to be inhibited in a concentration dependent manner was not statistically significant probably due to a high variability observed within groups. However, the decrease showed experimental groups compared with values from control allow us to assume that there is an inhibition produced by captan. The results obtained in the present study show that captan at concentrations as low as 10^{-5} M may inhibit epithelial transport of glucose

The effect of captan on the active transport of D-glucose and L-tyrosine in evented sacs of mouse small intestine. Results are expressed as moles \times 10^{-8} \times g^{-1} \times h^{-1} . Vertical lines (top of bars) represent \pm SE of the means.Number inside bars represent number of experiments. $^{\text{h}}$ > 0.01 Figure 1.

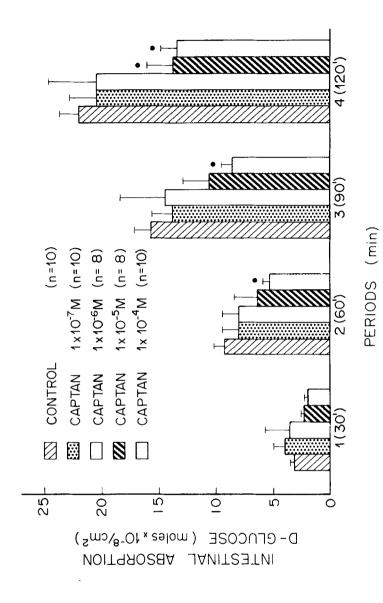
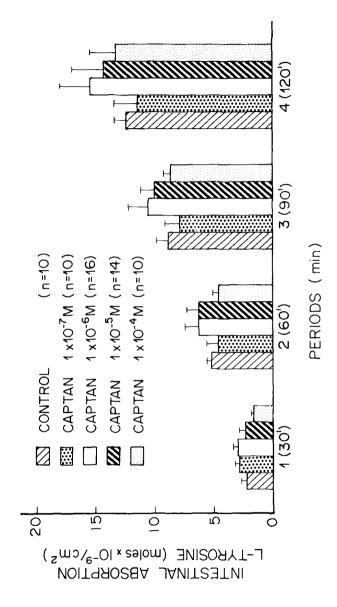



Figure 2. The effect of captan on the mouse intestinal absorption of D-glucose during a 30 min Results are . Vertical lines (top of bars) represent ± Se The perfusion rate was 0.1 ml/min. perfusion period during expressed means. (1

The effect of captan on the mouse intestinal absorption of L-tyrosine during 30 min perfusion period during 2 hours. The perfusion rate was 0.1 ml/min. Results are expressed as moles x $10^{-9}/\mathrm{cm}^2$. Vertical lines (top of bars) represent \pm SE of the means. (n) = number of experiments. Figure 3.

tyrosine in everted sacs of mouse small intestine. As was pointed out previously (Iturri and Wolff, 1982) nothing can be said from the results obtained with this experimental procedure about the effect of this fungicide on the passive transepithelial transport for these non-electrolytes.

Figures 2 and 3 show the effect of captan on the intestinal uptake of D-glucose and L-tyrosine during a 30 min perfusion period during two hours. Fig. 2 shows that the absorption capacity for glucose uptake decreases as the concentration of captan increases. This fact is more noticeable in periods 3 (90 min) and 4 (120 min) with a captan concentration equal to 10^{-5} and 10^{-4} M (P < 0.01). This inhibition by captan is equal to 39.2% (10^{-5} M) and 44.4% (10^{-4} M) at 90 min and slightly diminishes at 120 min being 37.3% (10^{-5} M) and 38.6% (10^{-4} M). The effect on tyrosine transport was not significant with the concentrations used (Fig. 3).

It has been established how sensitive the intestinal epithelium might be in nutrient uptake when toxic substances are present (Iturri and Wolff, 1982; Iturri and Peña, 1986; Miller,1981; Madge 1976; Wolff and Bull, 1982; Iturri et al., 1989). There are no data related to the effect of captan on the intestinal absorption capacity of mammalian species.

The exact mechanism by which captan induces inhibition intestinal uptake in vitro and in vivo is not clear from this study. At the present stage, however we assume that captan may interfering on 1) membrane lipids of epithelial cell, $(Na^{+} + K^{+})$ -ATPase activity from the basolateral membrane epithelial cell or 3) the protein molecule with carrier capacity located in the brush border membrane of the epithelial cell. this respect there are some experimental evidences showing chemicals may decrease intestinal absorption capacity affecting a single or combination of these mechanisms (Musch et al., 1990; Iturri et al., 1989; Chauncey et al., 1988; Wolff and Bull, 1982; Miller, 1981). Finally the present findings are relevant assessing the potential value of how apparent non toxic substances may interfere with intestinal nutrient absorption, an important process needed for growth and maintenance of the individual.

REFERENCES

Bridges B A (1975) The mutagenicity of captan and related fungicides. Mutation Res. 32: 133-150

Carere A, Ortali V, Cardannone A, Raschetti R (1978) Microbiological mutagenicity studies of pesticides *in vitro*. Mutation Res 57: 277-286.

Chauncey B, Schmid E D, Goldstein L (1988) Arsenical and mercurial inhibitions of tyrosine transport by the flounder intestine. J. Toxicol Environ Hlth 23: 257-265.

Gaines T, Linder R E (1986) Acute toxicity of pesticides in adult and weanling rats. Fund Appl Toxicol 7: 299-307.

- Iturri SJ, Wolff, D. (1982) Inhibition of the active transport of D-glucose and L-tyrosine by DDT and DDE in the rat small intestine. Comp Biochem Physiol 71C: 131-134.
- Iturri SJ, Peña A. (1986) Heavy metal-induced inhibition of active transport in the rat small intestine *in vitro*. Interaction with other ions. Comp Biochem Physiol 84C: 363-368.
- Iturri SJ, Zamorano B, Peña A (1989) Effect of DDE on ionic and fluid movement in rat colon *in vitro*. Comp Biochem Physiol PT C 94: 173-176.
- Lowry OH, Rosebrough NJ, Farr AL, Randall RL (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193: 265-275.
- Madge DS (1976) Polychlorinated biphenyls and intestinal absorption of D-glucose in mice. Gen Pharmacol 7: 1-5.
- Martin ĎH, Lewis RA (1979) Alterations of nucleic acids and protein synthesis in vivo in the chick embryo mediated by captan. Xenobiotica 9: 523-532.
- Miller DS (1981) HgCl₂ inhibition of nutrient transport in teleost fish small intestine. J Pharmacol Exp Ther 216: 70-76.
- Musch MW, Chauncey B, Schmid EC, Kinne RK, Goldstein L (1990)
 Mechanisms of mercurial and arsenical inhibition of tyrosine
 absorption in intestine of the winter flounder Pseudoplewronectus
 americanus. Toxicol appl Pharmacol 104: 59-66.
- Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153: 375-380.
- Wapnir RA, Exeni RA, McVicar M, Lifshitz F (1977) Experimental lead poisoning and intestinal transport of glucose, amino acids and sodium. Pediat Res 11: 153-157.
- Wilson TH, Wiseman G (1954) The use of sacs of everted small intestine for the study of transference of substances from the mucosal to the serosal surface. J Physiol 123: 116-125.
- Wolff D, Bull R (1982) Modification of ion transport in lipid bilayer membranes by the insecticides DDT and DDE. Biochem Biophys Acta 688: 138-144.